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Coupled Power Equations for Backward Waves

D. MARCUSE, MEMBER, IEEE

Absfracf—Two waves traveling in opposite directions that are

coupled by a random coupling function are considered. These two

waves can be described in a standard way by coupled wave equations.

It is possible to derive coupled equations for the power carried by

these two waves. The form of the coupled power equations cliff ers

depending on the assumptions that are made for the initial condi-

tions. The validity of the coupled power equations has been confirmed

by a computer-simulated experiment.

INTRODUCTION

C
OUPLED POWER equations for waves traveling

in opposite directions have been derived by Rowe

[1] under the assumption that the coupling func-

tion has a white-noise spectrum and that the initial con-

ditions for both waves have been specified at the far end

of the transmission lines. He thus assumes that the out-

put of mode (or line) 1 is specified at the end of the

guide and that no power is incident at the far end in

the reflected wave. His theory predicts the expected

value of the reflected wave at the input of the line, as

well as the expected values of the input waves that are

required to obtain the fixed output value of the inci-

dent mode.

If one considered it as an established fact that the

power exchange between the two waves can be treated

by adding power instead of amplitude, one would write

down intuitive coupled power equations that differ in

form from the coupled power equations that Rowe de-

rived. The question arises whether those intuitive equa-

tions are meaningless or how they are related to Rowe’s

equations. In order to gain insight into that problem,

we conducted a computer-simulated experiment tracing
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waves through ten simulated waveguides with random

coupling and compared the average output power ob-

tained from the experiment with the prediction of the

theories. The experiment can be done in several ways.

It is possible to launch a constant amplitude into each

of the ten random waveguides and to compute the

average values of the power output of the incident wave

at the far end of the guide, as well as the average power

of the reflected wave at the near end of the guide. The

result of this experiment agreed strikingly with the

intuitive coupled power equations, while it was defi-

nitely at odds with Rowe’s equations. However, the

experimental conditions did not conform to Rowe’s

assumptions. We then changed the conditions requiring

that the output voltage of the incident wave have a

fixed value at the far end while no power enters the

reflected mode at the far end. The experimental values

now showed far larger scatter than in the first case, but

comparison indicated that they were in agreement with

Rowe’s equations while they definitely contradicted the

predictions of the intuitive equations if they were ap-

plied to this case.

The result of this experiment points to the conclusion

that different differential equations are required to de-

scribe the statistical outcome of coupled wave experi-

ments in which the two waves travel in opposite direc-

tions. One set of equations describes the situation in

which the input wave is known while no reflected wave

is allowed to enter at the far end. Another set of coupled

power equations describes the experimental situation in

which we require that the output wave has a definite

amplitude, while again no power is allowed to enter the

reflected mode at the far end.

In this paper both types of coupled power equations

are derived from the coupled wave equations using per-
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turbation theory. The derivation of these equations is

not rigorous, and no attempt has been made to verify

the assumptions that are needed for their derivation.

However, one set of equations is in agreement with

Rowe’s rigorous theory and the computer-simulated

experiment aids in establishing confidence that the

other set of equations derived in this nonrigorous way

is indeed valid.

DERIVATION OF COUPLED POWER EQUATIONS

Coupled power equations have been derived from

coupled wave equations by several authors [2], [3].

A derivation of coupled power equations for N modes

(iV~ 2) by the same method employed in this paper

has been published earlier [4].

Our starting point will be the coupled wave equations

[5] for two modes traveling in opposite directions:

da
—. —@la + clzb
dz

(1)

(2)

We assume that the wave with amplitude a travels in

the positive z direction with propagation constant i%,

while the wave with amplitude b travels in the negative

z direction with propagation constant 13z. We shall as-

sume that /31 and & are both real neglecting losses in the

waveguide. The substitutions

a(z) = A (z) e–i~l’ (3)

b(z) = l?(z)ei~z’ (4)

introduce the slowly varying wave amplitudes AI and B.
In fact, in the absence of coupling we would have

A = constant and B = constant. Substitution of (3) and

(4) into (1) and (2) results in the reduced form of the

coupled wave equations:

dA
~12BeW1+132)Z

dz =
(5)

dB
— = cZIAe–i@l+@ZJ”.
dz

(6)

Conservation of power requires the relation

d\A12 _ d[1312
—=0.

dz dz
(7)

The minus sign is required since the amplitude B be-

longs to a wave traveling in the negative z direction.

When the wave A gains power its z derivative is posi-

tive. However, if the wave B gains power it grows as it

travels along the negative z axis so that its z derivative

k negative. The sum of the power gain of the two waves

must vanish if power is to be conserved. Using the dif-

ferential equations (5) and (6) we obtain from (7)

(CIZ – czl*)A*Bei@’+~zjz + C.C.= O.

The asterisk indicates complex conjugation. The abbre-

viation C.C. indicates that the complex conjugate of the

terms appearing in the equation must be added. Be-

cause A and B can be chosen arbitrarily owing to our

freedom of choice of initial conditions, we can satisfy

this equation only by requiring the following relation

between the coupling coefficients:

C12 = C21*. (8)

Since our objective is to derive coupled equations for

the average power carried by the two modes, we form

d([Ai2)
= (clzA*B)ei@’+@zJZ+ C.C. (9)

dz

where ( ) indicates an ensemble average.

In order to be able to use perturbation theory we re-

quire that the coupling is sufficiently weak so that the

wave amplitudes A and B change only very little over

distances comparable to or larger than the correlation

length D of the correlation function

R(u) = R(–u) = (C12(Z)CI,*(Z + u)). (lo)

The idea of our derivation is based on the intuitive ex-

pectation that the wave amplitudes at a point z = z’ are

uncorrelated with the coupling coefficients at a point

z = z’ i Az with Az>>D. In order to evaluate (9) we pro-

ceed in two different ways. First, we use the following

perturbation solution of (5) and (6):’

A(z) = A(z’ – Az) + B(Z’ + Az)

s

a

clz(x)ei@l+~aJxdx (11)
z*— Az

B(z) = B(z’ + Az) + A(z’ – Az)

s

1

cla*(*)e–i@l+fiZJ’ dx. (12)
z’+Az

It should be noted that the two equations are based on

different assumptions. In (11) we assumed that the am-

plitude A is known at a point z’ –Az to the left of the

point z. The argument z’+Az of B appearing in (11) was

chosen since B is traveling in the backward direction

so that it is natural to assume that we know the value

of B at the point z’ +Az. The fact that B has been taken

out of the integration sign is in keeping with our per-

turbation assumption that neither A nor B vary very

much over the distance Az.

In (12) we expanded B (z) backwards assuming that B

1 The coordinate z is the variable of the differential equations (5)
and (6), while z’ is used as a constant reference point in the vicinity
of z.
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is known at z’ +Az. The coupling coefficient CXI was re-

placed with C12* with the help of (8).

We now substitute (11) and (12) into (9) and neglect

terms of order higher than the second in the coupling

coefficient CM We thus obtain

d(l A(Z)(2)
= (] A(z’ – Az)]’)

dz

J
z

(c12(z)cl,*(x))e’(~’+@’)(Z-Z)dx
Z1+AZ

+ ([ B(z’ + Az)\2)

“sz (c12(z)c12*(x))ei(~’+~’)(*z) dx
ZI— AZ

+ Cc. (13)

We used our assumption that A and B, at a point

z’ f Az, are uncorrelated with cl’ at z’. This assumption

permitted us to write ensemble averages of products of

amplitudes and coupling coefficients as products of en-

semble averages of amplitudes times ensemble averages

of coupling coefficients. The term linear in CM vanished

because we assume

(C,2) = o. (14)

We rewrite the integrals appearing in (13) in the follow-

ing way:

s‘ (c12(z)c12*(x))e’@’+@’)(z-z) dx =
z’+Az

so—R(zt)e’@’+~”U du (15)
—’x

dP~
— – –K(P. – PJ.

dz –
(21)

These equations could have been written down immedi-

ately since they have a simple intuitive meaning. As-

sume that pb = O. We then see from (20) that Pa de-

creases since it loses power to mode B. Similarly we

obtain a positive derivative for pb from (21) by assum-

ing P. = O, This too indicates that power is lost from

mode B to mode A since B is a mode traveling in the

negative z direction, Finally, it appears plausible to

require vanishing derivatives if P.= pb.
For our second derivation of coupled power equations

we assume that A is not given at a point to the left of

z = z’, but use instead the assumption that A is known

at a larger z value and write, in complete analogy with

(12),

i4(z) = i4(z’ + Az) + B(Z’ + Az)

“1 c12(x)ei@1+~2)zdx. (22)

It is apparent that we now must use, instead of (12),

~(z) = B(z’ + Az) + ~(Z’ + Az)

“J
z

c12*($)e–$@’+~’)m dz. (23)
#+Az

Proceeding in exact analogy to the derivation of (20)

and (21) we obtain the following set of coupled power

equations:

and dP.

s

z
— – –K(P. + PJ— (24)

(c12(z)c1z*(x))e’(@’+~’J(z-z)dx =
dz

X1—AZ

f“~(u)e-~,+~,)~du. (16)

dPb
— – –K(Pa+ P,).— (25)

dz
J _m

We used (10) and replaced the lower integration limit
Equations (24) and (25) do not have a simple intuitive

meaning and in fact appear wrong on the basis of the
with — ~, assuming that the correlation function de-

creases so rapidly for u > D that the change of the inte-
argument brought forth to explain the meaning of (20)

and (21). However, (24) and (25) can be obtained from
gration limit has no influence on the value of the inte- Rowe’s paper [1] in the limit of vanishing losses and
gral. We introduce the abbreviations weak coupling. Our derivation suggests that (20) and

PJz’) = (1 A(z’) 12)= (1 A(Z’ – Az) 12) (17)

P,(z’) = ( I B(z’) [2) = ( I B(z’ + Az) [2) (18)

and

s

o

K=2 R(u) cos (@l + ,82)U du (19)
—w

and obtain from (7) and (13) the following set of coupled

power equations:

dP.
– K(P. – pb)

dz =
(20)

(21) hold when we specify that A is known for values of

z smaller than the point at which we wish to apply the

differential equations, while B is known at a larger value

of z. Equations (24) and (25) were derived under the

assumption that both A and B are specified for z values

larger than the value at which the differential equation

is to be applied. It is thus not surprising that the set of

equations (20) and (21) can be used to solve the random

coupling problem if we use the boundary conditions

A (0) = 1 and B(L) = O. Equations (24) and (25), on the

other hand, apply to the case considered by Rowe:

A(L)=l and B(L)=O.
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Athirdform for the coupled power equations can be

obtained by assuming that both A and B are known for

z values smaller than the value at which the differential

equations are to be applied. These equations differ from

(24) and (25) by the fact that both equations now ap-

pear with a plus sign.

COMPUTER-SIMULATED EXPERIMENT

In order to check the validity of the coupled power

equations, we conducted a computer-simulated experi-

ment. ln order to use a simple model for the random

coupling, we assumed that Clz has a constant magnitude,

but randomly varying sign:

CIZ = &K. (26)

TABLE I

2L7D = n/2, 100 sections of guide w~th constant coupling of

rsndom sign

zlvd~
Pa(L) Pa(L) Pb(o) Pb(o)

(exp) (thee) (exp) (thee)

0.1 0.990 0.988 0.00999 0.0124

0,3 0.913 0.899 0.0877 0.101

1.0 0.433 0.444 0.567 0,556

3.0 9.8 10-5 8.1 10-2 0.999 0.919

500 sections of guide with constant coupling of random sign

0.1 0.949 0.940 0.0510 0.0595

0.3 0.633 0.637 0,367 0.363

1.0 0.0496 0.137 0.950 0.863

The sections over which Clz remains unchanged are given

constant length D. The correlation function is then

given by

I
JI-[2[

forlu\<D
R(u) = D’ (27)

!o, for\ ul>d

while the Fourier transform of the correlation function is

K = ;’~ (1 – COS 26D). (28)

For simplicity PI= ~~ =@ was assumed.

The coupled power equations (20) and (21) have the

following solutions:

l+ K(L–z)
Pa = Po (29)

l+KL

and

K(L – Z)

Pb = Po
l+KL “

(30)

Built into these solutions are the boundary conditions

P.(z) =PO at z=O and P~(z) =0 at z=L. In order to

check the validity of the solutions (29) and (30) we have

computed the matrix relating the amplitudes of the

output of a transmission line by multiplying all the

matrices belonging to the individual sections of length

D. Each of these matrices has the form

cos ~’D—i ~ sin b’D -L~sinfl’D

M,=

f: sin ~’D
B

cos @’D+i — sin fi’D
P’ P’

with

(31)

The matrix relating input amplitudes to output ampli-

tudes for the entire length of waveguide is

()all all
= MN. MN_l . . . M2. M1. (33)

a21 a22

The amplitudes at the beginning and end of the guide

are related by the equation

(3=(::2(:1)
Generating random sequences of c12= +K

allows us to simulate random waveguides.

(34)

and CIZ= — K

The average

output power at the end of these guides is P=(L) = ]UN] z
and the average reflected power arriving at z = O is

P~(0) = ] bl] 2. For simplicity we used PO= 1.

The result of the simulated experiment is compared

with theory in Table 1. Each experimental average

value is the result of using waveguides with 100 (or 500)

sections with constant coupling coefficients, but with

randomly varying signs and averaging over 10 such

random waveguides. The dependence of the average

power on 2~D via (28)–(30) has been checked and was

found to be in excellent agreement with experiment.

Table II shows two samples of the individual results ob-

tained for all 10 simulated waveguides, and gives some

idea of the fluctuations of the actual power around the

average value.

A similar comparison was made by considering, in-

stead of (34), the boundary conditions

(35)

and comparing the experimentally obtained power

averages with the solutions of (24) and (25):
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TABLE II

2BD = Ir/2, 100 sections of guide with constant coupling

of random sign

2nK/@ = 0.3

Pa(L) Pb(o)

number of experiment (exp ) (exp)

1

2

3

4

5

6

7

8

9

10

500 sections of guide with

1

2

3

4

5

6

-1’

8

9

10

0.8635 0.1s65

0.85s8 0.1462

0.8849 0.1151

0.8920 0.1080

0.9488 0.0512

0.9299 0.0701

0.9793 0.0207

0.9078 0.0922

0.9586 0.0414

0.9137 0.0863

<(pb-<pb>)2>1’2 = 0.041G

constant coupling of random sign

0.5413 0.4587

0.5738 0.4262

o.402i 0.5979

0.6503 0.3497

0.9002 0.0998

0.5171 0.4829

0.8372 0.1628

0.7926 0.2074

0.7111 0.2889

0.4038 0.5962

<(pb-<pb>)2>1’2 = 0.166

Pa = +(e’KL+l) (36)

P~ = ~(e2~~ – 1). (37)

The agreement of the experimentally obtained averages

with the theoretical results was much poorer in this

case. The poor agreement can be attributed to the very

large scatter in the data of the simulated experiment.

However, the experimental rseults were definitely in

favor of the theory (36) and (37) and did not agree at

all with the solutions (29) and (30) of the power equa-

tions (20) and (21). It is thus apparent that the two

different sets of differential equations (20) and (21) on

the one hand and (24) and (25) on the other hand are

required to describe the two experimental situations.

The statistical differential equations thus have the

unusual property of being directly connected with the

boundary conditions that are to be imposed on the solu-

tion. Ordinarily, a differential equation (or a set of equa-

tions) is given independently of the boundary condi-

tions. Its solutions are selected by the requirement that

545

they satisfy certain boundary conditions. Our statistical

equations have the feature that we need the boundary

conditions not only to select the proper solutions of the

equations but also to select the proper differential equa-

tions that are compatible with just these boundary

conditions.

In order to explain the seeming anomaly we consider

the following simple example [6]. Let us assume that

two variables x and y are related by the equation

x = ay. (38)

If a is a random variable’ we can calculate the expected

values of x provided y is specified. We thus obtain

(%) = (a)y. (39)

On the other hand we can also consider x as specified

and calculate the expected value of y:

(y) = (:)x. (40)

Since the expected values of a and 1/a are different from

each other, the functional relationship (39) is not the

same as (40). The problem is inherently nonlinear so

that the result depends on which of the variables is con-

sidered as specified and which is considered as random.

This is just the distinction between the different types

of initial value problems that we have considered in

this paper.

CONCLUSIONS

we have found that two modes traveling in opposite

directions in a waveguide with random coupling coeffi-

cients can be described by coupled power equations

describing the interchange of power from one mode to

the other on a statistical (ensemble average) basis.

Using perturbation theory it is possible to derive dif-

ferent forms of these coupled power equations. Each

form is valid in conjunction with a certain set of bound-

ary conditions. we thus have the unusual situation that

the boundary conditions determine not only the par-

ticular solutions of a given differential equation but

that the differential equation itself is related to the

boundary conditions. The derivation of the coupled

power equations is mathematically not rigorous, but is

based on ideas of perturbation theory. The validity of

the equations has been confirmed by a computer-simu-

lated experiment that was performed for a particularity

simple model of the random coupling function. The

agreement of the computer simulation with one set of

differential equations is excellent. The other set of dif-

ferential equations describes conditions for which the

experimental data resulted in a great deal of scatter.

However, this set of coupled power equations has inde-
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pendently been derived by a rigorous method by Rowe

so that no need was felt to improve the agreement be-

tween theory and experiment by using larger statistical

samples, since the experimental evidence clearly sug-

gested the validity of these equations.
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Short Papers

On Optimum Mirrors of the Fabry-Perot Resonator

Filled with Anisotropic Medium

TOSHIKI TANAKA AND MICHIO SUZUKI

Abstract—A Fabry-Perot resonator formed by parabolic cylindri-
cal reflecting mirrors and filled with anisotropic medium is analyzed
theoretically. For the resonance of the extraordinary wave in such a
resonator, optimum shapes of the reflecting mirrors exist, which are
derived from the boundary conditions on each mirror.

Fabry–Perot resonators (FPRs) are widely used in the optical fre-
quency region, and the confocal FPR is known as a resonator with

considerably low diffraction loss [1], [2]. However, where the medium

in the resonator is anisotropic and the resonance of the extraordinary

wave, which has Ey, E,, and Hz components as shown in Fig. 1 is

required, the diffraction loss increases greatly. This effect depends on

the fact that the reflections of the extraordinary wave at the mirrors’

surfaces are not symmetrical because of the anisotropy.

In this short paper we present the theoretical results on the opti-

mum shapes of the reflecting mirrors for the resonance of the extra-

ordinary wave.

We consider an FPR formed by two parabolic cylindrical reflect-

ing mirrors and filled with anisotropic medium as shown in Fig. 1.

The dyadic dielectric constant of the medium is given by

F= ~ ~ n,n,eif (1)
%-1,=1

where we assume that E12= e.zl= e~?= w = O.

When a current distribution .TW(y, z) exists in the resonator, the

total electric field in the resonator 13’(y, z) is given by the sum of

E.fjI, z), due to Jv(y, z), and Em (y, z), due to the induced mirror cur-

rents .71(y, z) and ~z(y, z). Assuming that the surface impedances of

the mirrors are 2,s1 and ZS,, and taking a<<b, the boundary conditions

of the electric field on SI and SZ are as follows:

Em,.(s,) + Ew(sl) – 2s, J](y) = o

J%@,) + Ew/(SZ) – .G,J2(Y) = 0. (2)

Manuscript received January 12, 1971;, revked January 18, 1971.
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Fig. L

.+ ..2. +

Fabry–Perot resonator filled with anisotropic medium.

Assuming that the equations of the mirrors S1 and SZ are

Z=g, (y)=+-yz+ll y-c

Z=g,(y)=–-!ywly+c (3)

we can calculate the electric field E ~,v and E,.v by employing the uni-
form transmission line representation [3], regarding the direction z

as a transmission line. Substituting the results into (2) and changing

the variable y = at, we obtain the following simultaneous integral

equations:

(l+~)JW+ f: .T2(t’)K21(t,t’)dt’ = %V(S1)

f

1

-1 “(’’)K12(’>’’)d”+ (l+%? )J’(’)“SV(S2) ‘4)
where

K,, (t, $’) = ‘4
z-
~mexp

[
-j M=-:+ ;(tz+t’z)

—Cltt’+ c2’t — c2t’I

v’
CT

K,z(t, t’) = ~ exp -j
[

kb. – ~+ : (P + t“)

- Cltt’+ c*t—Cz’t’1 (5)


