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Cohn’s criterion is based on the behavior of the fringing
capacities for {=0 and one might expect intuitively
that the interaction of fringing capacities would decrease
markedly as £ increases.

REFERENCES

[1] S. W. Conning, “The characteristic impedance of square coaxial
line,” IEEE Trans. Microwave Theory Tech. (Corresp.), vol.
MTT-12, p. 468, July 1964.

[2] F. Bowman, “Notes on two-dimensional electric field problems,”
Proc. London Math. Soc., vol. 39, no. 2, pp. 211-214, 1935.
13

, Introduction to Elliptic Functions with Applications.
York: Dover, 1961, pp. 39-104.

[4] A. Cayley, Elliptic Functions. New York: Dover, p. 360.

[51 W. J. Getsinger, “Coupled rectangular bars between parallel
plates,” IRE Trans. Microwave Theory Tech., vol. MTT-10, pp.
65-72, Jan. 1962.

[6] S. B. Cohn, “Problems in strip transmission lines,” IRE Trans.

Microwave Theory Tech. (Special Issue: Symposium on Micro-
wave Strip Circuits), vol. MTT-3, pp. 119-126, Mar. 1955.

New

Coupled Power Equations for Backward Waves

D. MARCUSE, MEMBER, IEEE

Abstract—Two waves traveling in opposite directions that are
coupled by a random coupling function are considered. These two
waves can be described in a standard way by coupled wave equations.
It is possible to derive coupled equations for the power carried by
these two waves. The form of the coupled power equations differs
depending on the assumptions that are made for the initial condi-
tions. The validity of the coupled power equations has been confirmed
by a computer-simulated experiment.

INTRODUCTION

OUPLED POWER equations for waves traveling
(g in opposite directions have been derived by Rowe
[1] under the assumption that the coupling func-
tion has a white-noise spectrum and that the initial con-
ditions for both waves have been specified at the far end
of the transmission lines. He thus assumes that the out-
put of mode (or line) 1 is specified at the end of the
guide and that no power is incident at the far end in
the reflected wave. His theory predicts the expected
value of the reflected wave at the input of the line, as
well as the expected values of the input waves that are
required to obtain the fixed output value of the inci-
dent mode.

If one considered it as an established fact that the
power exchange between the two waves can be treated
by adding power instead of amplitude, one would write
down intuitive coupled power equations that differ in
form from the coupled power equations that Rowe de-
rived. The question arises whether those intuitive equa-
tions are meaningless or how they are related to Rowe’s
equations. In order to gain insight into that problem,
we conducted a computer-simulated experiment tracing
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waves through ten simulated waveguides with random
coupling and compared the average output power ob-
tained from the experiment with the prediction of the
theories. The experiment can be done in several ways.
It is possible to launch a constant amplitude into each
of the ten random waveguides and to compute the
average values of the power output of the incident wave
at the far end of the guide, as well as the average power
of the reflected wave at the near end of the guide. The
result of this experiment agreed strikingly with the
intuitive coupled power equations, while it was defi-
nitely at odds with Rowe's equations. However, the
experimental conditions did not conform to Rowe’s
assumptions. We then changed the conditions requiring
that the output voltage of the incident wave have a
fixed value at the far end while no power enters the
reflected mode at the far end. The experimental values
now showed far larger scatter than in the first case, but
comparison indicated that they were in agreement with
Rowe’s equations while they definitely contradicted the
predictions of the intuitive equations if they were ap-
plied to this case.

The result of this experiment points to the conclusion
that different differential equations are required to de-
scribe the statistical outcome of coupled wave experi-
ments in which the two waves travel in opposite direc-
tions. One set of equations describes the situation in
which the input wave is known while no reflected wave
is allowed to enter at the far end. Another set of coupled
power equations describes the experimental situation in
which we require that the output wave has a definite
amplitude, while again no power is allowed to enter the
reflected mode at the far end.

In this paper both types of coupled power equations
are derived from the coupled wave equations using per-
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turbation theory. The derivation of these equations is
not rigorous, and no attempt has been made to verify
the assumptions that are needed for their derivation.
However, one set of equations is in agreement with
Rowe's rigorous theory and the computer-simulated
experiment aids in establishing confidence that the
other set of equations derived in this nonrigorous way
is indeed wvalid.

DERIVATION OF CoUPLED PowER EQUATIONS

Coupled power equations have been derived from
coupled wave equations by several authors [2], [3].
A derivation of coupled power equations for N modes
(N>2) by the same method employed in this paper
has been published earlier [4].

Our starting point will be the coupled wave equations
[5] for two modes traveling in opposite directions:

da .

- = "“1,81(1« + 612[) (1)
dsz

b

—_— = ’Lﬁzb + Ca10. (2)
dz

We assume that the wave with amplitude a travels in
the positive z direction with propagation constant (i,
while the wave with amplitude b travels in the negative
z direction with propagation constant 8.. We shall as-
sume that 8y and B are both real neglecting losses in the
waveguide. The substitutions

a(z) = A(g)e#r 3)
b(z) = B(3)e*» “)

introduce the slowly varying wave amplitudes 4 and B.
In fact, in the absence of coupling we would have
A =constant and B =constant. Substitution of (3) and
(4) into (1) and (2) results in the reduced form of the
coupled wave equations:

dA )

——d—z— = Cl?Be"t(ﬂl‘FﬁE)Z (5)
dB '

E = oy At BBz, (6)

Conservation of power requires the relation
dl4l* d|B|*
dz dz

0. @)

The minus sign is required since the amplitude B be-
longs to a wave traveling in the negative z direction.
When the wave A gains power its z derivative is posi-
tive. However, if the wave B gains power it grows as it
travels along the negative 2 axis so that its z derivative
is negative. The sum of the power gain of the two waves
must vanish if power is to be conserved. Using the dif-
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ferential equations (5) and (6) we obtain from (7)
(c12 — c1*) A*¥Bei®1t89: L c.c. = 0.

The asterisk indicates complex conjugation. The abbre-
viation c.c. indicates that the complex conjugate of the
terms appearing in the equation must be added. Be-
cause A and B can be chosen arbitrarily owing to our
freedom of choice of initial conditions, we can satisfy
this equation only by requiring the following relation
between the coupling coefficients:

Cl2 = 621*. (8)

Since our objective is to derive coupled equations for
the average power carried by the two modes, we form

(|47

y = (c124*B)etGrtbns 4 c.c, 9)
2

where ( ) indicates an ensemble average.

In order to be able to use perturbation theory we re-
quire that the coupling is sufficiently weak so that the
wave amplitudes 4 and B change only very little over
distances comparable to or larger than the correlation
length D of the correlation function

R(u) = R(—u) = {c12(z)c12*(z + u)). (10)

The idea of our derivation is based on the intuitive ex-
pectation that the wave amplitudes at a point =2’ are
uncorrelated with the coupling coefficients at a point
z=3"+Az with Az>>D. In order to evaluate (9) we pro-
ceed in two different ways. First, we use the following
perturbation solution of (5) and (6):!

A@E) = A(F — Az) + B + Az)

z
']‘z'——Az

B(z) = B(¢ + Az) + A5 — Ag)

c12(%) 1B dy;

(11)

f c19¥ (x) et B1HbIz gy (12)
2'4-Az

It should be noted that the two equations are based on
different assumptions. In (11) we assumed that the am-
plitude 4 is known at a point 2’ —Az to the left of the
point z. The argument 2’ 4-Az of B appearing in (11) was
chosen since B is traveling in the backward direction
so that it is natural to assume that we know the value
of B at the point 2’ +Az. The fact that B has been taken
out of the integration sign is in keeping with our per-
turbation assumption that neither 4 nor B vary very
much over the distance Az.

In (12) we expanded B(z) backwards assuming that B

* The coordinate z is the variable of the differential equations (5)
a?d (6), while 7’ is used as a constant reference point in the vicinity
of z.
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is known at 2’ 4Az. The coupling coefficient ¢z was re-
placed with cie* with the help of (8).

We now substitute (11) and (12) into (9) and neglect
terms of order higher than the second in the coupling
coefficient ¢12. We thus obtain

d A(2) 12

w - <l A(z' — Az) l2>

z 2

' f (612(2)612*(x)>ei(ﬂ1+l32) (e—=2) dx
z'+Az

+ (| Bz + 29 |2)

z
: f <612(z)512*(x)>6i(ﬂ1+ﬁz) (z—z) dx
2'—Az

+ c.c. (13)

We used our assumption that 4 and B, at a point
3’ + Az, are uncorrelated with ¢i» at 3’. This assumption
permitted us to write ensemble averages of products of
amplitudes and coupling coefficients as products of en-
semble averages of amplitudes times ensemble averages
of coupling coefficients. The term linear in ¢;; vanished
because we assume

<C12> = 0.

We rewrite the integrals appearing in (13) in the follow-
ing way:

(14)

f (612(2)612*(x)>ei(51+l32) (=) Joo =
2’4+ Az .
- f R(u)ei(ﬂ1+ﬂz)u du (15)

and

z
f <C12(Z)612*(x) >ei(51+ﬂz) (e=2) dyp =
2'—Az

0
f R(u)e i@+t gy (16)

We used (10) and replaced the lower integration limit
with — e, assuming that the correlation function de-
creases so rapidly for #>D that the change of the inte-
gration limit has no influence on the value of the inte-
gral. We introduce the abbreviations

Po@) = (| A [ = (| 4@ — a9 [ (A7)
Pu(@) = (| B@) [ =~ {| B + a2) [*)  (18)

and
K = 2f0 R(u) cos (B1 + B2)u du (19)

—o0

and obtain from (7) and (13) the following set of coupled
power equations:

apP,

dz

= —K(Ps — P) (20)
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dpP,

dz

= —K(P, — Py). (21)

These equations could have been written down immedi-
ately since they have a simple intuitive meaning. As-
sume that P,=0. We then see from (20) that P, de-
creases since it loses power to mode B. Similarly we
obtain a positive derivative for P, from (21) by assum-
ing P,=0. This too indicates that power is lost from
mode B to mode A since B is a mode traveling in the
negative z direction. Finally, it appears plausible to
require vanishing derivatives if P, =.F%.

For our second derivation of coupled power equations
we assume that 4 is not given at a point to the left of
z=g’, but use instead the assumption that 4 is known
at a larger 2z value and write, in complete analogy with

(12),
A(z) = A + Az) + B(z' + Az)

f c1alw)ef Btz do (22)
z2'+Az

It is apparent that we now must use, instead of (12),
B(z) = B(& + Az) + A5 + Ag)

f 612*<x)6—1(51+/32)xd:’c. (23)
2'+Az

Proceeding in exact analogy to the derivation of (20)
and (21) we obtain the following set of coupled power
equations:

dpP,

= —K(P,+ Py) (24)
dz
dPy

= _K(Pa+Pb)- (25)
dz

Equations (24) and (25) do not have a simple intuitive
meaning and in fact appear wrong on the basis of the
argument brought forth to explain the meaning of (20)
and (21). However, (24) and (25) can be obtained from
Rowe’s paper [1] in the limit of vanishing losses and
weak coupling. Our derivation suggests that (20) and
(21) hold when we specify that 4 is known for values of
z smaller than the point at which we wish to apply the
differential equations, while B is known at a larger value
of 3. Equations (24) and (25) were derived under the
assumption that both 4 and B are specified for z values
larger than the value at which the differential equation
is to be applied. It is thus not surprising that the set of
equations (20) and (21) can be used to solve the random
coupling problem if we use the boundary conditions
A(0) =1 and B(L) =0. Equations (24) and (25), on the
other hand, apply to the case considered by Rowe:
A(L)=1 and B(L)=0.
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A third form for the coupled power equations can be
obtained by assuming that both A and B are known for
z values smaller than the value at which the differential
equations are to be applied. These equations differ from
(24) and (25) by the fact that both equations now ap-
pear with a plus sign.

COMPUTER-SIMULATED EXPERIMENT

In order to check the validity of the coupled power
equations, we conducted a computer-simulated experi-
ment. In order to use a simple model for the random
coupling, we assumed that ¢;; has a constant magnitude,
but randomly varying sign:

Ciz = iK. (26)
The sections over which ¢, remains unchanged are given
constant length D. The correlation function is then
given by
D— |u
K2 ———— for | u| <D
R(u) = D

0

@7
for |u|>d

)

while the Fourier transform of the correlation function is

2

K
K = Eﬁ—? (1 — cos 28D).

(28)
For simplicity 81 =8:=8 was assumed.

The coupled power equations (20) and (21) have the
following solutions:

1+ K(L —
w = OJ—M (29)
1+ KL
and
P Gl (30)
P 1 kL

Built into these solutions are the boundary conditions
Pu(z) =Py at 2=0 and Py(3) =0 at z=L. In order to
check the validity of the solutions (29) and (30) we have
computed the matrix relating the amplitudes of the
output of a transmission line by multiplying all the
matrices belonging to the individual sections of length
D. Each of these matrices has the form
B8 . Ko

cos ' D—i E sin 8'D T—sin 8'D

M= 31)

i—;—, sin 8'D cos 8’ D4 5—, sin 8D

with
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TABLE I
2BD = w/2, 100 sections of gulde with constant coupling of
random sign
orese Eall) P, (L) P, (0) P, (0)
(exp) (theo) (exp) (theo)
0.1 0.990 0.988 0.00999 0.0124
0.3 0.913 0.899 0.0877 0.101
1.0 0.433 0. LUk 0.567 0.556
3.0 9.8 107° 8.1 1072 0.999 0.919
500 sections of gulde with constant coupling of random sign
0.1 0.945 0.940 0.0510 0.0595
0.3 0.633 0.637 0.367 0.363
1.0 0,.0496 0.137 0.950 0.863
B =B — . (32)

The matrix relating input amplitudes to output ampli-
tudes for the entire length of waveguide is

a1 Q12
( > = My My - - My-M,. (33)

ao1 Q22

The amplitudes at the beginning and end of the guide
are related by the equation

(5)- G 2)G)
0 @21 @22/ \b1 .
Generating random sequences of ciz= 4k and ¢p= —«
allows us to simulate random waveguides. The average
output power at the end of these guides is P,(L) = laN] 2
and the average reflected power arriving at z=0 is
Py(0) = | b1] 2. For simplicity we used Py=1.

The result of the simulated experiment is compared
with theory in Table I. Each experimental average
value is the result of using waveguides with 100 (or 500)
sections with constant coupling coefficients, but with
randomly varying signs and averaging over 10 such
random waveguides. The dependence of the average
power on 28D via (28)—(30) has been checked and was
found to be in excellent agreement with experiment.
Table II shows two samples of the individual results ob-
tained for all 10 simulated waveguides, and gives some
idea of the fluctuations of the actual power around the
average value.

A similar comparison was made by considering, in-
stead of (34), the boundary conditions

()= G oG
0 a1 a2/ \by

and comparing the experimentally obtained power
averages with the solutions of (24) and (25):

(34)

(35)
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TABLE 1I
28D = n/2, 100 sections of guide with constant coupling
of random sign
2n¢/8 = 0.3

P (L) P, (0)

number of experiment (exp) (exp)
1 0.8635 0.1365
2 0.8538 0.1462
3 0.8849 0.1151
4 0.8920 0.1080
5 0.9488 0.0512
6 0.9299 0.0701
7 0.9793 0.0207
8 0.9078 0.0922
9 0.9586 0.0414
10 0.9137 0.0863

R -2 >)DY2 = 0.0416

500 sections of guide with constant coupling of random sign

1 0.5413 0.4587
2 0.5738 0.4262
3 0.4021 0.5979
i 0.6503 0.3497
5 0.9002 0.0998
6 0.5171 0.14829
7 0.8372 0.1628
8 0.7926 0.2074
9 0.7111 0.2889
10 0.4038 0.5962

(B~ 32 = 0.166

Po =} + 1) (36)

P, = (2Kl — 1), 37
The agreement of the experimentally obtained averages
with the theoretical results was much poorer in this
case. The poor agreement can be attributed to the very
large scatter in the data of the simulated experiment.
However, the experimental rseults were definitely in
favor of the theory (36) and (37) and did not agree at
all with the solutions (29) and (30) of the power equa-
tions (20) and (21). It is thus apparent that the two
different sets of differential equations (20) and (21) on
the one hand and (24) and (25) on the other hand are
required to describe the two experimental situations.
The statistical differential equations thus have the
unusual property of being directly connected with the
boundary conditions that are to be imposed on the solu-
tion. Ordinarily, a differential equation (or a set of equa-
tions) is given independently of the boundary condi-
tions. Its solutions are selected by the requirement that

545

they satisfy certain boundary conditions. Our statistical
equations have the feature that we need the boundary
conditions not only to select the proper solutions of the
equations but also to select the proper differential equa-
tions that are compatible with just these boundary
conditions.

In order to explain the seeming anomaly we consider
the following simple example [6]. Let us assume that
two variables x and y are related by the equation

x = ay. (38)

If ¢ is a random variable we can calculate the expected

values of x provided y is specified. We thus obtain

() = (a)y. 39

On the other hand we can also consider x as specified
and calculate the expected value of y:

-0

Since the expected values of @ and 1/a are different from
each other, the functional relationship (39) is not the
same as (40). The problem is inherently nonlinear so
that the result depends on which of the variables is con-
sidered as specified and which is considered as random.
This is just the distinction between the different types
of initial value problems that we have considered in
this paper.

(40)

CONCLUSIONS

We have found that two modes traveling in opposite
directions in a waveguide with random coupling coeffi-
cients can be described by coupled power equations
describing the interchange of power from one mode to
the other on a statistical (ensemble average) basis.
Using perturbation theory it is possible to derive dif-
ferent forms of these coupled power equations. Each
form is valid in conjunction with a certain set of bound-
ary conditions. We thus have the unusual situation that
the boundary conditions determine not only the par-
ticular solutions of a given differential equation but
that the differential equation itself is related to the
boundary conditions. The derivation of the coupled
power equations is mathematically not rigorous, but is
based on ideas of perturbation theory. The validity of
the equations has been confirmed by a computer-simu-
lated experiment that was performed for a particularily
simple model of the random coupling function. The
agreement of the computer simulation with one set of
differential equations is excellent. The other set of dif-
ferential equations describes conditions for which the
experimental data resulted in a great deal of scatter.
However, this set of coupled power equations has inde-



546

pendently been derived by a rigorous method by Rowe
so that no need was felt to improve the agreement be-
tween theory and experiment by using larger statistical
samples, since the experimental evidence clearly sug-
gested the validity of these equations.
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Short Papers

On Optimum Mirrors of the Fabry—Perot Resonator
Filled with Anisotropic Medium

TOSHIKI TANAKA anxp MICHIO SUZUKI

Abstract—A Fabry-Perot resonator formed by parabolic cylindri-
cal reflecting mirrors and filled with anisotropic medium is analyzed
theoretically. For the resonance of the extraordinary wave in such a
resonator, optimum shapes of the reflecting mirrors exist, which are
derived from the boundary conditions on each mirror.

Fabry-Perot resonators (FPRs) are widely used in the optical fre-
quency region, and the confocal FPR is known as a resonator with
considerably low diffraction loss [1], [2]. However, where the medium
in the resonator is anisotropic and the resonance of the extraordinary
wave, which has E,, E,, and H, components as shown in Fig. 1 is
required, the diffraction loss increases greatly. This effect depends on
the fact that the reflections of the extraordinary wave at the mirrors’
surfaces are not symmetrical because of the anisotropy.

In this short paper we present the theoretical results on the opti-
mum shapes of the reflecting mirrors for the resonance of the extra-
ordinary wave.

We consider an FPR formed by two parabolic cylindrical reflect-
ing mirrors and filled with anisotropic medium as shown in Fig. 1.
The dyadic dielectric constant of the medium is given by

t=2 ZS nunyei; 1)

1=l 9=

A

where we assume that e =en =e =€ =0.

When a current distribution J,(y, 2) exists in the resonator, the
total electric field in the resonator E;(y, g) is given by the sum of
E.(y, ), due to Jy(v, 2), and E,.(y, 2), due to the induced mirror cur-
rents Ji (v, 2) and Ja(y, 2). Assuming that the surface impedances of
the mirrors are Zg, and Zg,, and taking a<b, the boundary conditions
of the electric field on S; and .S; are as follows:

Enw(S1) + Ley(S1) — Zs, J1(3) = 0
Eny(S2) + Boy(Se) — Zg,Joly) = 0. (2)
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Fig. 1. Fabry-Perot resonator filled with anisotropic medium.

Assuming that the equations of the mirrors S, and S; are

1
7= =42 -
FA16)] 4ﬁ0y +By—-C

1
Z =gy = I y¥+4y+C @
4

we can calculate the electric field E,.,y and E,,, by employing the uni-
form transmission line representation [3], regarding the direction 2
as a transmission line. Substituting the results into (2) and changing
the variable y=at, we obtain the following simultaneous integral
equations:

2z :
(1 + R:‘) T + f_ljz(t’)Kn(t, )t = ey(S1)

1
0Kl 0t + (1+ 2;”) D) = en(S) @

0

where
c1 ¢
Ku(t, ) = 4/ %exp — jl: kb — ;—’+ ?" (2 + %)
—_ Cltt' + Cz'.f/ L Czt’:l
K, t) = 4/ Eexp ~j [kba ~Ir 2@
’ 2 4 2

- G]ﬂl + cof — Cz’i’] (5)



